
Python Classes

Bryce Hime baugh

E210 Engineering Cyber-Physical Systems (Spring 2021)

INDIANA UNIVERSITY BLOOMINGTON

https://engr210.github.io/

https://engr210.github.io/

INDIANA UNIVERSITY BLOOMINGTONINDIANA UNIVERSITY BLOOMINGTON

Raspberry I2C Link

Python Reference

• https://diveintopython3.net/

• MIT Open Courseware

https://diveintopython3.net/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/

MIT Open Courseware
Object Oriented Programming

Ana Bell, Eric Grimson, and John Guttag. 6.0001 Introduction to Computer Science
and Programming in Python. Fall 2016. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016
https://creativecommons.org/licenses/by-nc-sa/4.0/

OBJECT ORIENTED
PROGRAMMING

6.0001 LECTURE 8

6

OBJECTS

6.0001 LECTURE 8

7

 Python supports many different kinds of data
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 each is an object, and every object has:
• a type
• an internal data representation (primitiveor composite)
• a set of procedures for interaction with the object

 an object is an instance of a type
• 1234 is an instance of an int
• "hello" is an instanceof a string

OBJECT ORIENTED
PROGRAMMING (OOP)

6.0001 LECTURE 8

8

 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

 can create new objects of some type

 can manipulate objects

 can destroy objects
• explicitly using delor just “forget”about them
• python system will reclaim destroyed or inaccessible

objects – called “garbagecollection”

WHAT ARE OBJECTS?

6.0001 LECTURE 8

9

 objects are a data abstraction
that captures…

(1) an internal representation
• through data attributes

(2) an interface for
interactingwith object

• through methods
(aka procedures/functions)

• defines behaviors but
hides implementation

 how are lists represented internally?linked list of cells

L =

 how to manipulate lists?
• L[i], L[i:j], +
• len(), min(), max(), del(L[i])

• L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

 internal representation should be private

correct behavior may be compromised if you manipulate
internal representation directly

EXAMPLE:
[1,2,3,4] has type list

1 -> 2 -> 3 -> 4 ->

6.0001 LECTURE 8

10

ADVANTAGES OF OOP

6.0001 LECTURE 8

11

bundle data into packages together with procedures
that work on them through well-defined interfaces
 divide-and-conquer development

• implement and test behavior of each class separately
• increased modularity reduces complexity

 classes make it easy to reuse code
• many Python modules define new classes
• each class has a separateenvironment (no collision on

function names)
• inheritance allows subclasses to redefine or extend a

selected subset of a superclass’ behavior

 make a distinction between creating a class and
using an instance of the class

 creating the class involves
• defining the class name
• defining class attributes
• for example,someone wrote code to implement a list class

 using the class involves
• creating new instances of objects
• doing operations on the instances
• for example,L=[1,2]and len(L)

Implementing the class Using the class

6.0001 LECTURE 8

12

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

DEFINE YOUR OWN TYPES
 use the class keyword to define a new type

class Coordinate(object):

#define attributes here

similar to def, indent code to indicate which statements are
part of the class definition

the wordobjectmeans thatCoordinate is a Python
object and inherits all its attributes (inheritancenext lecture)
• Coordinate is a subclass of object
• object is a superclass of Coordinate

Implementing the class Using the class

6.0001 LECTURE 8

13

WHAT ARE ATTRIBUTES?

6.0001 LECTURE 8

14

 data and procedures that “belong” to the class

 data attributes
• think of data as other objects that make up the class
• for example,a coordinate is made up of two numbers

 methods (procedural attributes)
• think of methods as functions that only work with this class
• how to interact with the object
• for example you can define a distance between two

coordinate objects but there is no meaning to a distance
between two list objects

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
first have to define how to create an instance of
object

init to use a special method called
initialize some data attributes
class Coordinate(object):

def init (self, x, y):

self.x = x
self.y = y

Implementing the class Using the class

6.0001 LECTURE 8

15

ACTUALLY CREATING AN
INSTANCE OF A CLASS

c = Coordinate(3,4)
origin = Coordinate(0,0)

print(c.x)

print(origin.x)

data attributes of an instance are called instance
variables
don’t provide argument for self, Python does this
automatically

Implementing the class Using the class

6.0001 LECTURE 8

16

WHAT IS A METHOD?

6.0001 LECTURE 8

17

procedural attribute, like a function that works only
with this class

 Python alwayspasses the object as the first argument
• convention is to use selfas the name of the first

argument of all methods

 the “.” operator is used to access any attribute
• a data attribute of an object
• a method of an object

DEFINE A METHOD FOR THE
Coordinate CLASS

class Coordinate(object):

def init (self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

other than self and dot notation, methods behave just
like functions (take params, do operations, return)

Implementing the class Using the class

6.0001 LECTURE 8

18

HOW TO USE A METHOD
def distance(self, other):

code here

Using the class:
 conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

 equivalent to
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

Implementing the class Using the class

6.0001 LECTURE 8

19

PRINT REPRESENTATION OF
AN OBJECT
>>> c = Coordinate(3,4)
>>> print(c)
< main .Coordinate object at 0x7fa918510488>

 uninformative print representation by default

 define a str method for a class

 Python calls the str method when used with
print on your class object

 you choose what it does! Say that when we print a
Coordinate object, want to show
>>> print(c)
<3,4>

6.0001 LECTURE 8

20

DEFINING YOUR OWN PRINT
METHOD
class Coordinate(object):

def init (self, x, y):
self.x = x

self.y = y
def distance(self, other):

x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5
def str

(s

elf):

return "<"+str(self.x)+","+str(self.y)+">"

Implementing the class Using the class

6.0001 LECTURE 8

21

THE POWER OF OOP

6.0001 LECTURE 8

22

 bundle together objects that share
• common attributes and
• procedures that operateon those attributes

use abstraction to make a distinction between how to
implement an object vs how to use the object

build layers of object abstractions that inherit
behaviors from other classes of objects

create our own classes of objects on top of Python’s
basic classes

lps331 Class

INDIANA UNIVERSITY BLOOMINGTON

lps331ap.py module
#!/usr/bin/env python3

import smbus
import sys
import time
import numpy as np

class lps331:
''' allows connection from Raspberry pi to I2C connected lps331 '''

INDIANA UNIVERSITY BLOOMINGTON

lps331ap.py module

if __name__ == "__main__":
sensor = lps331(1)
print("Temperature = %0.2f Deg C "%(sensor.read_temperature()))
print("Pressure = %0.2f inHg"%(sensor.read_pressure()))
sensor.close()

INDIANA UNIVERSITY BLOOMINGTON

lps331 class
def __init__(self,raspberry_pi_i2c_port=1):

self.i2c_port_number = raspberry_pi_i2c_port
self.bus = smbus.SMBus(self.i2c_port_number)
self.address = self.find_sensor()
if (self.address == -1):

print("Error: could not read from sensor at i2c address 0x5d")
sys.exit()

self.enable_sensor()

INDIANA UNIVERSITY BLOOMINGTON

Methods to Create …

INDIANA UNIVERSITY BLOOMINGTON

Methods to Create …

Using the lps331ap.py Module

INDIANA UNIVERSITY BLOOMINGTON

Importing the lps331ap Module
#!/usr/bin/env python3

import lps331ap

pt_sensor = lps331ap.lps331(1)
print("Temperature = %0.2f Deg C "%(pt_sensor.read_temperature()))
print("Pressure = %0.2f inHg"%(pt_sensor.read_pressure()))
pt_sensor.close()

	Python Classes
	Slide Number 2
	Slide Number 3
	Python Reference
	MIT Open Courseware �Object Oriented Programming
	OBJECT ORIENTED PROGRAMMING
	OBJECTS
	OBJECT ORIENTED PROGRAMMING (OOP)
	WHAT ARE OBJECTS?
	EXAMPLE:
[1,2,3,4] has type list
	ADVANTAGES OF OOP
	CREATING AND USING YOUR OWN TYPES WITH CLASSES
	DEFINE YOUR OWN TYPES	
	WHAT ARE ATTRIBUTES?
	DEFINING HOW TO CREATE AN INSTANCE OF A CLASS
	ACTUALLY CREATING AN INSTANCE OF A CLASS
	WHAT IS A METHOD?
	DEFINE A METHOD FOR THE
Coordinate CLASS	
	HOW TO USE A METHOD
	PRINT REPRESENTATION OF AN OBJECT
	DEFINING YOUR OWN PRINT METHOD
	THE POWER OF OOP
	lps331 Class
	lps331ap.py module
	lps331ap.py module
	lps331 class
	Methods to Create …
	Methods to Create …
	Using the lps331ap.py Module
	Importing the lps331ap Module

