)

E210 Engineering Cyber-Physical Systems (Spring 2021)

Python Classes

Bryce Himebaugh

Weekly Focus
Exam/CPS Introduction
Raspberry Pi
12C Bus
Python/Sensor
5PI
SPI
Network Interface

MOTT/Flask

Reading
Ref 1 Chapter 1

Ref 2 Chapter 1-3

Ref 4, Ref 5

Ref 7 Chapter 1

Ref 7 Chapter 2

Ref 7 Chapter 14

Final Exam Tues 5/4 10:10-12:10

w INDIANA UNNVERSITY BLOOMINGTON

Monday
3/8: Exam 1
3/15: Pi Intro/UART Bus

3/22:12C Bus

3/29: Classes/Modules

4/5: SP| Bus Overview
4/12: SPI HDL Design
4/19: Ethernet Interface

4/26: Flask

Wed
3/10: CPS Introduction
3/17: Git/Github
3/24: Wellness Day
3/31: Pressure Sensor
4/7: 5PI HDL Design
4/14: Sensor Memory
4/21: MQTT

4/29: Open Topic

Lab

Project 5 Raspberry Pl Setup

Project 6 12C Pressure Sensor

Project 7 SPI Connected 1/O

Project 8 Network Interface

https://engr210.github.io/

https://engr210.github.io/

Raspberry 12C Link

Network

m INDIANA UNNVERSITY BLOOMINGTON

12C Link

Workstation Serial Interface

THE EXPERT S WOHCE® 1N QR S -

Python Reference Dive Into

Python 3

A ehia ¢

https://diveintopython3.net/

MIT Open Courseware

§ Marlk Pilgrim
MITOPENCOURSEWARE B siscmsnneocnmsiter £ (O] W@)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Help | ContactUs

General Relativity

- ~
G L ot S
» \liew the new course 4 ", v ey o L T '/ §§
% t' .. Heeeee i
-’ A ¥ ~ -

I'l suggest to my kads thal MIT will be a k Xueyi
Support OCwW g:;i;l:ﬁé{_ﬂmmhmlzeﬂmr _';:,‘ i GIVE NOW >
<> ina

https://diveintopython3.net/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/

MIT Open Courseware
Object Oriented Programming

Ana Bell, Eric Grimson, and John Guttag. 6.0001 Introduction to Computer Science

and Programming in Python. Fall 2016. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016
https://creativecommons.org/licenses/by-nc-sa/4.0/

OBJECT ORIENTED
PROGRAMMING

OBJECTS

= Python supports many different kinds of data

1234 3.14159 "Hello" (1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

= each is an object, and every object has:
* atype
 an internal data representation (primitive or composite)
 a set of procedures forinteraction with the object

= an object is an instance of a type
e 1234 isaninstanceofan int

e "hello"isaninstanceof a string

6.0001 LECTURE 8

OBJECT ORIENTED
PROGRAMMING (OOP)

= EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

= can create new objects of some type

= can manipulate objects

= can destroy objects
 explicitlyusing del or just “forget” about them

- python system will reclaim destroyed orinaccessible
objects— called “garbage collection”

WHAT ARE OBJECTS?

= objects are a data abstraction
that captures...

(1) an internal representation
* through data attributes

(2) an interface for
interacting with object
* through methods
(aka procedures/functions)

- defines behaviors but
hides implementation

6.0001 LECTURE 8

EXAMPLE:
[1,2,3,4] has type list

= how are lists represented internally? linked list of cells

L = ENES—EER BN TN

= how to manipulate lists? A
e L[1i], L[i:3j1, +
* len(), min(), max (), del(L[i])
* L.append(),L.extend(),L.count(),L.index (),

L.insert (),L.pop(),L.remove(),L.reverse(), L.sort()
= internalrepresentation should be private

=correct behavior may be compromised if you manipulate
internal representation directly

6.0001 LECTURE 8

ADVANTAGES OF OOP

shundle data into packages together with procedures
that work on them through well-defined interfaces

= divide-and-conquer development
* implement and test behavior of each class separately
* increased modularity reduces complexity

= classes make it easy to reuse code
* many Python modules define new classes

- each class has a separate environment (no collision on
function names)

- inheritance allows subclasses to redefine or extend a
selected subset of a superclass’ behavior

6.0001 LECTURE 8

CREATING AND USING YOUR

OWN TYPES WITH CLASSES

= make a distinction between creating a class and
using an instance of the class

= creating the class involves
 defining the class name
 defining class attributes
* forexample, someone wrote code toimplement a list class

= using the class involves
* creating new instances of objects
* doing operationson the instances
* forexample, L=[1,2]and 1en (L)

Implementing the class

DEFINE YOUR OWN TYPES

= use the class keyword to define a new type
© S
® C\Z;em

class||Coordinatel(locbject]) :

O , .
& #define attributes here
5

%" asimilar tode f, indent code to indicate which statementsare
part of the class definition

sthe word object meansthat Coordinateisa Python
object and inherits all its attributes (inheritance next lecture)
* Coordinateisasubclassof object

* objectisasuperclassof Coordinate

6.0001 LECTURE 8

WHAT ARE ATTRIBUTES?

= data and procedures that “belong” to the class

= data attributes
* think of data as other objects that make up the class
* forexample, a coordinate is made up of two numbers

" methods (procedural attributes)
* think of methods as functions that only work with this class

* how tointeract with the object

- forexample you can define a distance between two
coordinate objects butthere is no meaning to a distance
between two list objects

6.0001 LECTURE 8

Implementing the class

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS

=first have to define how to create an instance of
object

= yse a special method called init to
initialize some data attributes

A\
V. eC
. . (\\\-\ \e
class Coordinate (object) : - RN neo‘o
AP
— W
def| init (splf,| x, y): cO ©
<
6«&0 / \ (Qe“e
X7 e = @V e
o o€ .\‘\&‘\c self |x X Qae&e‘ <O o X
C
5% 6‘63(\ O\e self. Vi= VY S&O("¢ (.(\5_’&(\
(€97 \ oW R\) N
.\56 Co(e " a\‘(\\o R \o°
~ de(c’ 3‘3 6«3’0
of RNO d\‘ COO\Q
el

6.0001 LECTURE 8

ACTUALLY CREATING AN

INSTANCE OF A CLASS

: o

c =| Coordinate (3, 4) e

L) ae? 200
origin = Coordinate (0,0) € ® 2% %0

. g N {’d‘*{\' (\db“
print (c.x) O e Cooss.\(\% i@(’ >

. — AOY L 0 G v

. e xS Q
print (origin. x) 09?’«\953“36 5 e
36?\05‘606

"data attributes of an instance are called instance
variables

sdon’t provide argument for self, Python does this
automatically

WHAT ISA METHOD?

sprocedural attribute, like a function that works only
with this class

= Python alwayspasses the object as the first argument

- conventionis to use sel f as the name of the first
argument of all methods

= the “.” operator is used to access any attribute
* a dataattribute of an object
* a method of an object

6.0001 LECTURE 8

DEFINEA METHOD FOR THE

Coordinate CLASS

class Coordinate(object) :

20 oo
def init (self, x, Vy): <N“6 6ﬂw§
— — 2
self.x = x gd“) @éé Sdﬁa
'&“ﬁ Qﬁa -&ﬁﬁ
self.y =y 5’ Oov@ ‘&ﬁp
) 20
def distance (lself}, |other) : &ﬁwﬁ
x diff sg = (selflxtother.x)**2

y diff sq = (self.y-other.y)**2
return (x diff sq + y diff sq)**0.5
sother than self and dot notation, methods behave just

like functions (take params, do operations, return)

6.0001 LECTURE 8

Using the class

HOW TO USE A METHOD

def distance(self, other): ok

code here e&\(\oé
«
Using the class:
= conventional way = equivalentto
c = Coordinate (3, 4) c = Coordinate (3, 4)
zero = Coordinate (0, 0) zero = Coordinate (0, 0)
print (.distance zero)) print (Coordinatel|distance|(lc, zero]))
\ \! 20
co \ \\ ot o WS
\"QO 0 ‘e(%, (< c \)6\ O
P 3 B od @ ee” e o o W
e«\o 3 Q0 \\)c\'\“% \ 0\368 ((\e’& e‘e“:v N e 6@&&
« W0 o’ Y we© RoY 0@ a0
\ = O\O\ 2
\((\Q (QQ
ot

6.0001 LECTURE 8

PRINT REPRESENTATION OF
AN OBJECT

>>> ¢ = Coordinate (3,4)
>>> print (c)
< main__.Coordinate object at 0x7fa918510488>

= uninformative print representation by default

= definea str method for aclass

= Python callsthe___str method when used with

print on your class object

= you choose what it does! Say that when we print a
Coordinate object, want to show

>>> print (c)
<3, 4>

6.0001 LECTURE 8

DEFINING YOUR OWN PRINT

METHOD

class Coordinate (object) :
def 1nit (self, x, y):

self.x = x

self.y = vy
def distance(self, other):
x diff sgq = (self.x-other.x)**2

y diff sq = (self.y-other.y)**2
return (x diff sq + y diff sq)**0.5

def| str elf):
oot (s
@N&ﬁxdreturn "<"+str(%§$f.x)+","+str(self.y)+">"
giéNp szw%
66

6.0001 LECTURE 8

THE POWER OF OOP

= bundle together objects that share
* common attributesand
e proceduresthat operateon those attributes

=yse abstraction to make a distinction between how to
implement an object vs how to use the object

=build layers of object abstractionsthat inherit
behaviorsfrom other classes of objects

screate our own classes of objects on top of Python’s
basic classes

6.0001 LECTURE 8

Ips331 Class

Ips331ap.py module

#!/usr/bin/env python3

import smbus

import sys
import time
import numpy as np

class 1lps331:
"''" allows connection from Raspberry pi to I2C connected 1lps331 '''

m INDIANA UNNVERSITY BLOOMINGTON

Ips331ap.py module

if __name_ == " main_
sensor = 1ps331(1)
print("Temperature = %0.2f Deg C "%(sensor.read temperature()))
print("Pressure = %0.2f inHg"%(sensor.read pressure()))
sensor.close()

m INDIANA UNNVERSITY BLOOMINGTON

Ips331 class

def _init_ (self,raspberry pi i2c port=1):

self.i2c_port _number = raspberry pi i2c port

self.bus = smbus.SMBus(self.i2c_port_number)

self.address = self.find_sensor()

if (self.address == -1):
print("Error: could not read from sensor at i2c address Ox5d")
sys.exit()

self.enable_sensor()

m INDIANA UNNVERSITY BLOOMINGTON

def find_sensor(E

Methods to Create "'' read the whoami byte from i2c address @x5d and confirm to be @xbb "'’
mEEn

return(@);

def i2c_address():
return(.address)

def sample_once(E

Cause the sensor to sample one time

pass
def read_temperature():
""" Sample, read temperature registers, and convert to inhg '’
tempC = @
return(tempC)

INDIANA UNNVERSITY BLOOMINGTON

def read_pressure():
MethOds to Create LR """ Sample, read pressure registers, and convert to inhg "'’

press_inhg = @

return(press_inhg)

def enable_sensor():

Turn on sensor in control register 1'"'

pass

def disable_sensor()

Turn off sensor in control register 1

pass

INDIANA UNNVERSITY BLOOMINGTON

Using the Ips331ap.py Module

Importing the Ips331ap Module

#!/usr/bin/env python3
import lps33lap

pt_sensor = 1ps33lap.lps331(1)
print("Temperature = %0.2f Deg C "%(pt_sensor.read temperature()))

print("Pressure = %0.2f inHg"%(pt_sensor.read pressure()))
pt_sensor.close()

m INDIANA UNNVERSITY BLOOMINGTON

	Python Classes
	Slide Number 2
	Slide Number 3
	Python Reference
	MIT Open Courseware �Object Oriented Programming
	OBJECT ORIENTED PROGRAMMING
	OBJECTS
	OBJECT ORIENTED PROGRAMMING (OOP)
	WHAT ARE OBJECTS?
	EXAMPLE:
[1,2,3,4] has type list
	ADVANTAGES OF OOP
	CREATING AND USING YOUR OWN TYPES WITH CLASSES
	DEFINE YOUR OWN TYPES	
	WHAT ARE ATTRIBUTES?
	DEFINING HOW TO CREATE AN INSTANCE OF A CLASS
	ACTUALLY CREATING AN INSTANCE OF A CLASS
	WHAT IS A METHOD?
	DEFINE A METHOD FOR THE
Coordinate CLASS	
	HOW TO USE A METHOD
	PRINT REPRESENTATION OF AN OBJECT
	DEFINING YOUR OWN PRINT METHOD
	THE POWER OF OOP
	lps331 Class
	lps331ap.py module
	lps331ap.py module
	lps331 class
	Methods to Create …
	Methods to Create …
	Using the lps331ap.py Module
	Importing the lps331ap Module

