
Python Classes

Bryce Hime baugh

E210 Engineering Cyber-Physical Systems (Spring 2021)

INDIANA UNIVERSITY BLOOMINGTON

https://engr210.github.io/

https://engr210.github.io/

INDIANA UNIVERSITY BLOOMINGTONINDIANA UNIVERSITY BLOOMINGTON

Raspberry I2C Link

Python Reference

• https://diveintopython3.net/

• MIT Open Courseware

https://diveintopython3.net/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016/lecture-slides-code/

MIT Open Courseware
Object Oriented Programming

Ana Bell, Eric Grimson, and John Guttag. 6.0001 Introduction to Computer Science
and Programming in Python. Fall 2016. Massachusetts Institute of Technology: MIT
OpenCourseWare, https://ocw.mit.edu. License: Creative Commons BY-NC-SA.

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-0001-introduction-to-computer-science-and-programming-in-python-fall-2016
https://creativecommons.org/licenses/by-nc-sa/4.0/

OBJECT ORIENTED
PROGRAMMING

6.0001 LECTURE 8

6

OBJECTS

6.0001 LECTURE 8

7

 Python supports many different kinds of data
1234 3.14159 "Hello" [1, 5, 7, 11, 13]

{"CA": "California", "MA": "Massachusetts"}

 each is an object, and every object has:
• a type
• an internal data representation (primitiveor composite)
• a set of procedures for interaction with the object

 an object is an instance of a type
• 1234 is an instance of an int
• "hello" is an instanceof a string

OBJECT ORIENTED
PROGRAMMING (OOP)

6.0001 LECTURE 8

8

 EVERYTHING IN PYTHON IS AN OBJECT (and has a type)

 can create new objects of some type

 can manipulate objects

 can destroy objects
• explicitly using delor just “forget”about them
• python system will reclaim destroyed or inaccessible

objects – called “garbagecollection”

WHAT ARE OBJECTS?

6.0001 LECTURE 8

9

 objects are a data abstraction
that captures…

(1) an internal representation
• through data attributes

(2) an interface for
interactingwith object

• through methods
(aka procedures/functions)

• defines behaviors but
hides implementation

 how are lists represented internally?linked list of cells

L =

 how to manipulate lists?
• L[i], L[i:j], +
• len(), min(), max(), del(L[i])

• L.append(),L.extend(),L.count(),L.index(),

L.insert(),L.pop(),L.remove(),L.reverse(), L.sort()

 internal representation should be private

correct behavior may be compromised if you manipulate
internal representation directly

EXAMPLE:
[1,2,3,4] has type list

1 -> 2 -> 3 -> 4 ->

6.0001 LECTURE 8

10

ADVANTAGES OF OOP

6.0001 LECTURE 8

11

bundle data into packages together with procedures
that work on them through well-defined interfaces
 divide-and-conquer development

• implement and test behavior of each class separately
• increased modularity reduces complexity

 classes make it easy to reuse code
• many Python modules define new classes
• each class has a separateenvironment (no collision on

function names)
• inheritance allows subclasses to redefine or extend a

selected subset of a superclass’ behavior

 make a distinction between creating a class and
using an instance of the class

 creating the class involves
• defining the class name
• defining class attributes
• for example,someone wrote code to implement a list class

 using the class involves
• creating new instances of objects
• doing operations on the instances
• for example,L=[1,2]and len(L)

Implementing the class Using the class

6.0001 LECTURE 8

12

CREATING AND USING YOUR
OWN TYPES WITH CLASSES

DEFINE YOUR OWN TYPES
 use the class keyword to define a new type

class Coordinate(object):

#define attributes here

similar to def, indent code to indicate which statements are
part of the class definition

the wordobjectmeans thatCoordinate is a Python
object and inherits all its attributes (inheritancenext lecture)
• Coordinate is a subclass of object
• object is a superclass of Coordinate

Implementing the class Using the class

6.0001 LECTURE 8

13

WHAT ARE ATTRIBUTES?

6.0001 LECTURE 8

14

 data and procedures that “belong” to the class

 data attributes
• think of data as other objects that make up the class
• for example,a coordinate is made up of two numbers

 methods (procedural attributes)
• think of methods as functions that only work with this class
• how to interact with the object
• for example you can define a distance between two

coordinate objects but there is no meaning to a distance
between two list objects

DEFINING HOW TO CREATE AN
INSTANCE OF A CLASS
first have to define how to create an instance of
object

init to use a special method called
initialize some data attributes
class Coordinate(object):

def init (self, x, y):

self.x = x
self.y = y

Implementing the class Using the class

6.0001 LECTURE 8

15

ACTUALLY CREATING AN
INSTANCE OF A CLASS

c = Coordinate(3,4)
origin = Coordinate(0,0)

print(c.x)

print(origin.x)

data attributes of an instance are called instance
variables
don’t provide argument for self, Python does this
automatically

Implementing the class Using the class

6.0001 LECTURE 8

16

WHAT IS A METHOD?

6.0001 LECTURE 8

17

procedural attribute, like a function that works only
with this class

 Python alwayspasses the object as the first argument
• convention is to use selfas the name of the first

argument of all methods

 the “.” operator is used to access any attribute
• a data attribute of an object
• a method of an object

DEFINE A METHOD FOR THE
Coordinate CLASS

class Coordinate(object):

def init (self, x, y):

self.x = x

self.y = y

def distance(self, other):

x_diff_sq = (self.x-other.x)**2

y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5

other than self and dot notation, methods behave just
like functions (take params, do operations, return)

Implementing the class Using the class

6.0001 LECTURE 8

18

HOW TO USE A METHOD
def distance(self, other):

code here

Using the class:
 conventional way
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(c.distance(zero))

 equivalent to
c = Coordinate(3,4)

zero = Coordinate(0,0)

print(Coordinate.distance(c, zero))

Implementing the class Using the class

6.0001 LECTURE 8

19

PRINT REPRESENTATION OF
AN OBJECT
>>> c = Coordinate(3,4)
>>> print(c)
< main .Coordinate object at 0x7fa918510488>

 uninformative print representation by default

 define a str method for a class

 Python calls the str method when used with
print on your class object

 you choose what it does! Say that when we print a
Coordinate object, want to show
>>> print(c)
<3,4>

6.0001 LECTURE 8

20

DEFINING YOUR OWN PRINT
METHOD
class Coordinate(object):

def init (self, x, y):
self.x = x

self.y = y
def distance(self, other):

x_diff_sq = (self.x-other.x)**2
y_diff_sq = (self.y-other.y)**2

return (x_diff_sq + y_diff_sq)**0.5
def str

(s

elf):

return "<"+str(self.x)+","+str(self.y)+">"

Implementing the class Using the class

6.0001 LECTURE 8

21

THE POWER OF OOP

6.0001 LECTURE 8

22

 bundle together objects that share
• common attributes and
• procedures that operateon those attributes

use abstraction to make a distinction between how to
implement an object vs how to use the object

build layers of object abstractions that inherit
behaviors from other classes of objects

create our own classes of objects on top of Python’s
basic classes

lps331 Class

INDIANA UNIVERSITY BLOOMINGTON

lps331ap.py module
#!/usr/bin/env python3

import smbus
import sys
import time
import numpy as np

class lps331:
''' allows connection from Raspberry pi to I2C connected lps331 '''

INDIANA UNIVERSITY BLOOMINGTON

lps331ap.py module

if __name__ == "__main__":
sensor = lps331(1)
print("Temperature = %0.2f Deg C "%(sensor.read_temperature()))
print("Pressure = %0.2f inHg"%(sensor.read_pressure()))
sensor.close()

INDIANA UNIVERSITY BLOOMINGTON

lps331 class
def __init__(self,raspberry_pi_i2c_port=1):

self.i2c_port_number = raspberry_pi_i2c_port
self.bus = smbus.SMBus(self.i2c_port_number)
self.address = self.find_sensor()
if (self.address == -1):

print("Error: could not read from sensor at i2c address 0x5d")
sys.exit()

self.enable_sensor()

INDIANA UNIVERSITY BLOOMINGTON

Methods to Create …

INDIANA UNIVERSITY BLOOMINGTON

Methods to Create …

Using the lps331ap.py Module

INDIANA UNIVERSITY BLOOMINGTON

Importing the lps331ap Module
#!/usr/bin/env python3

import lps331ap

pt_sensor = lps331ap.lps331(1)
print("Temperature = %0.2f Deg C "%(pt_sensor.read_temperature()))
print("Pressure = %0.2f inHg"%(pt_sensor.read_pressure()))
pt_sensor.close()

	Python Classes
	Slide Number 2
	Slide Number 3
	Python Reference
	MIT Open Courseware �Object Oriented Programming
	OBJECT ORIENTED PROGRAMMING
	OBJECTS
	OBJECT ORIENTED PROGRAMMING (OOP)
	WHAT ARE OBJECTS?
	EXAMPLE:[1,2,3,4] has type list
	ADVANTAGES OF OOP
	CREATING AND USING YOUR OWN TYPES WITH CLASSES
	DEFINE YOUR OWN TYPES	
	WHAT ARE ATTRIBUTES?
	DEFINING HOW TO CREATE AN INSTANCE OF A CLASS
	ACTUALLY CREATING AN INSTANCE OF A CLASS
	WHAT IS A METHOD?
	DEFINE A METHOD FOR THECoordinate CLASS	
	HOW TO USE A METHOD
	PRINT REPRESENTATION OF AN OBJECT
	DEFINING YOUR OWN PRINT METHOD
	THE POWER OF OOP
	lps331 Class
	lps331ap.py module
	lps331ap.py module
	lps331 class
	Methods to Create …
	Methods to Create …
	Using the lps331ap.py Module
	Importing the lps331ap Module

