

E210 Engineering Cyber-Physical Systems

I2C Introduction

Bryce Himebaugh

Weekly Focus	Reading	Monday	Wed	Lab	
CPS Intro/UART		1/10: CPS Introduction	1/12: Pi Intro/UART Bus	Project 0 Raspberry PI Setup	
I2C Bus		1/17: MLK Day	1/19: I2C Bus Overview	Project 1 I2C Pressure/Temperature Sensor	
I2C and SPI Bus		1/24: Pressure Sensor	1/26: SPI Bus Overview	Project 2 SPI Accelerometer	
SPI/Networking		1/31: Accelerometer	2/2: Networking Overview	Project 3 Flask Web Server	
Networking		2/7: Flask	2/9: Redis/matplotlib	Project 3 Continued	
Web Server		2/14: CPS Wrapup	2/16: Exam Review	P5 Demultiplexer	
Evaluation		2/21: Exam 1	2/23: CE Intro/ Logic	P6 ALU	

Raspberry I2C Link

Ū

INDIANA UNIVERSITY BLOOMINGTON

I2C Overview

What is I2C?

- Synchronous Serial Link
- 2 Wire Bus
 - Open Collector
 - Half Duplex
- Devices are Individually Addressable
- Multiple Bus Controllers Possible

History of I2C

- Internally developed by Phillips Semiconductor in 1982
 - 100khz
 - 7-bit addresses: 128 devices on bus (practically 112)
- Public Specification in 1992
 - 400khz
 - 10-bit addresses possible
- Today
 - 5Mhz bus speeds

W INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Comparison to UART

Category	I2C	UART	
Clock	Synchronous	Asynchronous	
Speed	400K Baud (5M Baud Max)	115K Baud	
Transmission Mode	Half Duplex	Full Duplex	
Number of Devices	112 (1024 possible)	2	
Number of Pins	2 (Data, Clock)	2* (Rx, Tx), Optional (CTS,RTS)	
Baud Rate Accuracy Requirement	N/A	~3% Baud Rate Accuracy	
Development Complexity	More than UART	Less than I2C	

INDIANA UNIVERSITY SCHOOL OF INFORMATICS, COMPUTING, AND ENGINEERING

Device Naming Conventions

[1] Note: You may be familiar with the terms "master" and "slave" to represent the relationship between devices on an I²C bus. The terms are considered obsolete and are now replaced with the terms "controller" and "peripheral," respectively.

Obsolete Name	Replacement Name		
Master	Controller		
Slave	Peripheral		

The naming convention may vary depending on manufacturer, programming language, companies, or organizations (e.g. main/secondary, initiator-responder, source/replica, etc.). For more information, check out the following links.

- Wikipedia: Terminology Concerns
- OSHWA: A Resolution to Redefine SPI Signal Names

https://learn.sparkfun.com/tutorials/i2c/all

Bus Connections

Standard vs Open-Collector Output

Output a 0

Output a 1

Notice the two pull-up resistors on the two communication lines.

https://learn.sparkfun.com/tutorials/i2c/all

INDIANA UNIVERSITY BLOOMINGTON

INDIANA UNIVERSITY BLOOMINGTON

Peripheral Addressing

Bus Address vs Register Address

I2C Connections

Device Address: 0x5C or 0x5D Depending on External Pin Table 14 provides a list of the 8-bit registers embedded in the device and the related addresses.

Table 14. Registers address map

Name	Туре	Register Address		Default	Function and
Name		Hex	Binary	Delault	comment
Reserved (Do not modify)		00-07 0D - 0E			Reserved
REF_P_XL	R/W	08	0001000	00000000	
REF_P_L	R/W	09	0001001	00000000	
REF_P_H	R/W	0A	0001010	00000000	
WHO_AM_I	R	0F	0001111	10111011	Dummy register
RES_CONF	R/W	10	0010000	011111010	
Reserved (Do not modify)		11-1F			Reserved
CTRL_REG1	R/W	20	010 0000	00000000	
CTRL_REG2	R/W	21	010 0001	00000000	
CTRL_REG3	R/W	22	010 0010	00000000	
INT_CFG_REG	R/W	23	0100011	00000000	
INT_SOURCE_REG	R	24	0100100	00000000	
THS_P_LOW_REG	R/W	25	0100101	0000000	
THS_P_HIGH_REG	R/W	26	0100110	0000000	
STATUS_REG	R	27	010 0111	00000000	
PRESS_POUT_XL_REH	R	28	010 1000	output	
PRESS_OUT_L	R	29	010 1001	output	
PRESS_OUT_H	R	2A	010 1010	output	
TEMP_OUT_L	R	2B	010 1011	output	
TEMP_OUT_H	R	2C	010 1100	output	
Reserved (Do not modify)		2D-2F			Reserved
AMP_CTRL	R/W	30	011 0000		Partially reserved

Table 14 provides a list of the 8-bit registers embedded in the device and the related addresses.

Table 14. Registers address map

AMP CTRL

Register Address Function and Name Default Type comment Hex Binary 00-07 Reserved (Do not modify) Reserved 0D - 0E REF_P_XL R/W 08 0001000 00000000 REF P L R/W 09 0001001 00000000 REF_P_H R/W 0A 0001010 00000000 WHO_AM_I R 0F 0001111 10111011 Dummy register RES CONF R/W 10 0010000 011111010 Reserved (Do not modify) 11-1F Reserved CTRL_REG1 010 0000 R/W 20 00000000 CTRL REG2 R/W 21 010 0001 00000000 CTRL REG3 010 0010 R/W 22 00000000 INT_CFG_REG R/W 23 0100011 00000000 INT_SOURCE_REG R 24 0100100 00000000 THS P LOW REG 0100101 R/W 25 0000000 THS_P_HIGH_REG R/W 26 0100110 0000000 STATUS_REG R 27 010 0111 00000000 PRESS POUT XL REH 010 1000 R 28 output PRESS OUT L R 29 010 1001 output PRESS OUT H R 2A 010 1010 output TEMP OUT L R 2B 010 1011 output TEMP OUT H R 2C 010 1100 output Reserved (Do not modify) 2D-2F Reserved

R/W

30

011 0000

Partially reserved

LPS331 Registers

INDIANA UNIVERSITY BLOOMINGTON

Communication Protocol

Write from Controller to Peripheral

Figure 8 shows an example of writing a single byte to a slave register.

Master Controls SDA Line

Slave Controls SDA Line

Write to One Register in a Device

Figure 8. Example I²C Write to Slave Device's Register

https://www.ti.com/lit/an/slva704/slva704.pdf

7 6

Read Peripheral Register from Controller

Master Controls SDA Line

Slave Controls SDA Line

Read From One Register in a Device

Figure 9. Example I²C Read from Slave Device's Register

LPS331AP Pressure Sensor

LPS331AP

MEMS pressure sensor: 260-1260 mbar absolute digital output barometer

Datasheet –production data

Features

- 260 to 1260 mbar absolute pressure range
- High-resolution mode: 0.020 mbar RMS
- Low power consumption:
- Low resolution mode: 5.5 µA
- High resolution mode: 30 µA
- High overpressure capability: 20x full scale
- Embedded temperature compensation
- Embedded 24-bit ADC
- Selectable ODR from 1 Hz to 25 Hz
- SPI and I²C interfaces
- Supply voltage: 1.71 to 3.6 V
- High shock survivability: 10,000 g
- Small and thin package
- ECOPACK[®] lead-free compliant

Applications

- Indoor and outdoor navigation
- Enhanced GPS for dead-reckoning
- Altimeter and barometer for portable devices
- Weather station equipment
- Sport watches

Description

The LPS331AP is an ultra compact absolute piezoresistive pressure sensor. It includes a monolithic sensing element and an IC interface able to take the information from the sensing element and to provide a digital signal to the external world.

Table 4 Bandas announ

HCLGA-16L (3 x 3 x 1 mm)

The sensing element consists of a suspended membrane realized inside a single mono-silicon substrate. It is capable to detecting pressure and is manufactured using a dedicated process developed by ST, called VENSENS.

The VENSENS process allows to build a monosilicon membrane above an air cavity with controlled gap and defined pressure. The membrane is very small compared to the traditionally built silicon micromachined membranes. Membrane breakage is prevented by an intrinsic mechanical stopper.

The IC interface is manufactured using a standard CMOS process that allows a high level of integration to design a dedicated circuit which is trimmed to better match the sensing element characteristics.

The LPS331AP is available in a small holed cap land grid array (HCLGA) package and it is guaranteed to operate over a temperature range extending from -40 °C to +85 °C. The package is holed to allow external pressure to reach the sensing element.

← → C 🔒 https://www.pololu.com/product/2126

Batteries

Battery Holders

COVID-19 impact: We are still operating and shipping all orders! We are operating with a reduced staff, so for

This carrier for ST's LPS331AP digital barometer measures pressures from 260 mbar to 1260 mbz ±2 mbar (0.2 kPa) and typical RMS noise of 0.02 mbar (0.002 kPa) in high-resolution mode. The regulator and integrated level shifters that allow it to work over an input voltage range of 2.5 V 1.

1.1 LPS331AP block diagram

VDD (3.3V Out) VIN (2.5–5.5V) GND SDA/SDI/SDO SCL/SPC SDO/SA0 CS INT2

Ū