
1

ENGR 210 / CSCI B441
“Digital Design”

Sequential Logic
FSMs

Andrew Lukefahr

2

Announcements

• P7 Saturating Counter is out

• P8 – Elevator Controller is out
• This one is hard.

3

Always specify
defaults for

always_comb!

4

Inferred Latches are bad…

WARNING: [Synth 8-327] inferring latch for
variable 'count_reg'
[/home/autograder/working_dir/src/saturating_cou
nter.sv:XX]

5

BLOCKING (=) FOR
always_comb

NON-BLOCKING (<=) for
always_ff

6

8

Glitches on D-Latches

9

Flip-Flop in Verilog
module d_ff (

input d, //data
input clk, //clock
output logic q //output register

);

always_ff @(posedge clk)
begin

q <= d; //non-blocking assign
end

endmodule

10

Shift-Register in Verilog
module shift_register (

input clk, rst, D,
output [3:0] Q);

logic [3:0] dff;
logic [3:0] next_dff;

always_ff(@posedge clk) begin
if (rst) dff <= 4’h0;
else dff <= next_dff;

end

always_comb
next_dff = { dff[2:0], D};

assign Q = dff;

endmodule

11

Shift-Register in Verilog
module shift_register (

input clk, rst, D,
output [3:0] Q);

logic [3:0] dff;
logic [3:0] next_dff;

always_ff(@posedge clk) begin
if (rst) dff <= 4’h0;
else dff <= next_dff;

end

always_comb
next_dff = { dff[2:0], D};

assign Q = dff;

endmodule

12

What does this module do?
module mystery(

input clk, //clock

input rst, //reset

output logic out //output

);

logic [3:0] Q;

logic [3:0] sum;

always_ff @(posedge clk) // <- sequential logic

begin

if (rst) Q <= 4’h0;

else Q <= sum; //non-blocking

end

always_comb begin // <- combinational logic

sum = Q + 4’h1; //blocking

out = sum[3];

end

endmodule

14

What does this module do?
module counter(

input clk, //clock

input rst, //reset

output logic out //output

);

logic [3:0] Q;

logic [3:0] sum;

always_ff @(posedge clk) // <- sequential logic

begin

if (rst) Q <= 4’h0;

else Q <= sum; //non-blocking

end

always_comb begin // <- combinational logic

sum = Q + 4’h1; //blocking

out = sum[3];

end

endmodule

16

Sequential Logic uses both Flip-Flops
and Combinational Logic

17

Inputs can affect output or state

21

What’s wrong here?

logic [1:0] count;

always_comb begin
count = count; //default

if (foo) begin
count = count + 1;

end else if (bar) begin
count = count - 1;

end
end

22

What’s wrong here?

logic [1:0] count;

always_comb begin
count = count; //not a default

if (foo) begin
count = count + 1; //self reference

end else if (bar) begin
count = count - 1; //self reference

end
end

23

Count needs to be stateful.
logic [1:0] count, nextCount;

always_ff @(posedge clk) begin

if (rst) count <= 2’h0;

else count <= nextCount;

end

always_comb begin

nextCount = count; //default

if (foo) begin

nextCount = count + 1;

end else if (bar) begin

nextCount = count - 1;

end

end

25

Finite State Machines (FSMs)

26

Finite State Machines (FSMs)

• A finite-state machine (FSM) or finite-state automaton (FSA, plural:
automata), finite automaton, or simply a state machine, is a
mathematical model of computation.
• It is an abstract machine that can be in exactly one of a finite number

of states at any given time.
• The FSM can change from one state to another in response to some

inputs; the change from one state to another is called a transition.[1]
[wiki]

https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Abstract_machine
https://en.wikipedia.org/wiki/State_(computer_science)
https://en.wikipedia.org/wiki/Input_(computer_science)
https://en.wikipedia.org/wiki/Finite-state_machine

27

States, Transitions, and Guards

29

FSM: Traffic Signal Controller

• A controller for traffic at the intersection of a main highway and a
country road.

• The main highway gets priority because it has more cars

• The main highway signal remains green by default.

Main highway

Co
un

tr
y

ro
ad

30

Traffic signal controller

• Cars occasionally arrive from the country road. The traffic signal for the
country road must turn green only long enough to let the cars on the
country road go.

• When no cars are waiting on the country road, the country road traffic
signal turns yellow then red and the traffic signal on the main highway
turns green again.

There is a sensor to detect cars waiting on the country road. The sensor
sends a signal X as input to the controller:
X = 1, if there are cars on the country road
X = 0, otherwise

32

What are the `States’?

34

What are the `States’?

36

What are the `States’?

37

What are the `States’?

38

What are the `States’?

39

What are the `States’?

40

FSM: Simple Vending Machine

• You are designing a Vending Machine that dispenses Widgets for
$0.25/each.
• Your machine must accept any combination of nickels (N), dimes (D), and

quarters (Q) to pay for the Widget.
• When the correct payment is secured, you dispense the Widget (vend),

and reset the payment.
• If a customer overpays, you keep the extra money. J
• Just to simplify things…

41

FSM: Vending Machine

43

Moore vs. Mealy Type FSMs

• Thus far we’ve done ”Moore” Type
• Moore Type: Outputs determined by the state (circle)

• Another technique: “Mealy” Type
• Mealy Type: Output determined by the transition (arrow)

• Moore: Easier, but more states
• Mealy: Less states, more complicated transitions

44

Traffic Light: Moore vs. Mealy

46

Implementing FSMs with Circuits

• Encode each state as a number
• Store this with DFF’s

• Generate state transition logic (arrow to next state)
• Use combinational logic

• Generate output given state + inputs
• Use combinational logic

47

State Transition Encoding

49

State Machine Encoding

51

Next State Logic

52

Circuit Structure for FSMs

53

Output Logic (Highway)

55

Output Logic (Country Rd)

57

State Machine to Logic

58

State Machine to Verilog

• Define states?

59

State Machine to Verilog

• Define states?

enum { ST_0, ST_1, ST_2, ST_3} state, nextState;

60

State Machine to Verilog

• Build State Machine?

61

State Machine to Verilog

• Build State Machine?

always_ff @(posedge clk) begin
if (rst) state <= ST_0;
else state <= nextState;

end

• What is nextState?

62

State Machine to Verilog

always_ff @(posedge clk) begin

if (rst) state <= ST_0;

else state <= nextState;

end

• What is nextState?

63

State Machine to Verilog
always_ff @(posedge clk) begin

if (rst) state <= ST_0;

else state <= nextState;

end

always_comb begin

nextState = state; //default

case(state)

ST_0: nextState = ST_1; //goto state 1

ST_1: nextState = ST_2;

ST_2: nextState = ST_3;

ST_3: nextState = ST_0; //loop

default: nextState = ST_0; //just in case

endcase

end

64

State Machine to Verilog

•What is this missing?

always_comb begin
nextState = state; //default
case(state)

ST_0: nextState = ST_1; //goto state 1
ST_1: nextState = ST_2;
ST_2: nextState = ST_3;
ST_3: nextState = ST_0; //loop
default: nextState = ST_0; //just in case

endcase
end

65

State Machine to Verilog

• What is this missing?

always_comb begin
nextState = state; //default
case(state)

ST_0:
nextState = ST_1;

ST_1:

nextState = ST_2;
ST_2:

nextState = ST_3;
// ST_3 and default cases endcase

end

66

State Machine to Verilog

• What is this missing?

always_comb begin
nextState = state; //default
case(state)

ST_0:
if (X) nextState = ST_1;

ST_1:

nextState = ST_2;
ST_2:

if (~X) nextState = ST_3;
// ST_3 and default cases endcase

end

67

State Machine to Verilog

• What else is this missing?

always_comb begin

nextState = state; //default

case(state)

ST_0:
if (X) nextState = ST_1;

// ST_1-3 and default cases

endcase

end

68

State Machine to Verilog
always_comb begin

nextState = state; //default
Hryg = {0,0,1}; Cryg={1,0,0};
case(state)

ST_0: begin
if (X) begin

nextState = ST_1;
Hryg = {0,1,0};

Cryg = {1,0,0); //optional
end else begin

nextState = ST_0; //optional
Hryg = {0,0,1}; //optional
Cryg = {1,0,0); //optional

end
end

// ST_1-3 and default cases
endcase

end

69

State Machine in Logic

70

Circuit Structure for FSMs

71

Next Time

• More Finite State Machines (FSMs)

