
1

ENGR 210 / CSCI B441

Math

Andrew Lukefahr

2

Announcements

• P6 is due Friday
• Carry Tip: do 9 bit addition

• {‘h0,a} + {‘h0,b)

• Overflow:
• Check the book

• P7 Saturating Counter is out

4

Autograder Demo

5

2-BeltAlarm Task
task checkAlarm(

input kV, stPasV, sbPasV,
input stDrvV, sbDrvV,
input alarmV
);

k = kV; stPas=stPasV, sbPas=sbPasV;
stDrv = stDrvV; sbDrv = sbDrvV;
#10
assert(alarm == alarmV) else

$fatal (1, "bad alarm, expected:%b got:%b",
alarmV, alarm);

endtask

module TwoBeltAlarm(
input k, st_pas, sb_pas,
input st_drv, sb_drv
output alarm

);
logic al_pas, al_drv;

BeltAlarm ba_drv(k, st_drv, sb_drv, al_drv);
BeltAlarm ba_pas(.k(k), .p(st_pas),

.s(sb_pas), .alarm(al_pas));

assign alarm = al_pas | al_drv;
endmodule

6

‘wire’ vs ‘logic’

•wire
• Only used with ‘assign’ and module outputs
• Boolean combination of inputs
• Can never hold state

•logic
• Used with ‘always’ and module outputs
• Can be Boolean combination of inputs
• Can hold state (but doesn’t have to)

7

UPDATE: ‘wire’ vs ‘logic’
SystemVerilog (NEW) Rules:

Just use ‘logic’*

* EXCEPT
logic foo = ‘h42; (BAD) (OK)
logic foo = a & b; (BAD – Initial a & b only)

wire foo = a & b; (OK)

logic foo;

assign foo = a & b; (OK)

8

always_comb with case
module decoder (

input [1:0] sel,

output logic [3:0] out

);

always_comb begin
out = 4’b0000; //default
case(sel)

2’b00: out=4’b0001;
2’b01: out=4’b0010;
2’b10: out=4’b0100;
2’b11: out=4’b1000;?// what about sel==2’b11?

endcase
end

endmodule

Always specify
defaults for
always_comb!

9

Always specify defaults for
always_comb!

10

Always specify
defaults for

always_comb!

11

Ripple-Carry Adder

13

Adder/Subtractor
• Mode input:
• If M = 0, then S = A + B, the circuit performs addiCon
• If M = 1, then S = A + B+ + 1, the circuit performs subtracCon

14

Overflow for signed numbers?

• Unsigned

• Signed

Assume 4-bit addition

15

Overflow for signed numbers?

16

Overflow for signed numbers?

-7
+ -7

-14

17

Overflow for signed numbers?

18

21

Adder with overflow detection

22

Gate Delay

• Gates are not magic, they are physical
• Takes >me for changes flow through
• Assume 5ps (5E-12) / gate

• How fast can we update our adder?

23

Full Adder Gate Delay

• Assume 5ps/gate

• What is the total delay on s? on c?

25

Ripple-Carry Gate Delays

• What is the total delay here?

26

Adder Gate Delays

• What is the total delay for:

• 1-bit addition:
• 4-bit addition:
• 8-bit addition:
• 16-bit addition:
• 32-bit addition:
• 64-bit addition:

27

Adder Gate Delays

• What is the total delay for:

• 1-bit addition:
• 4-bit addition:
• 8-bit addition:
• 16-bit addition:
• 32-bit addition:
• 64-bit addition:

28

Faster Adder OpLons?

• What can be done to build a faster 64-bit adder?

• Google “Carry Look-Ahead Adder”

29

WARNING: MAJOR TOPIC SHIFT

SEQUENTIAL LOGIC

30

Sequential vs. Combinational
• CombinaEonal Logic

• The output is a combinaCon of the
current inputs only

• SequenEal Logic

• The output is a combinaCon of the
current and past inputs

32

SR Latch

34

SR Latch w/ S=1 & R=1

35

SR Latch w/NAND gates

37

SR Latch with Enable

40

D-Latch

41

D-Latch

43

Inputs to D Latches

45

Inputs to D Latches

47

Glitches

• Assume 10ps / gate.
• A=1, C=1, B falls
• What is F?

49

Glitches on D-Latches

51

What’s wrong here?

logic x,y,z;
logic foo, bar ;

always_comb begin

if (x) foo = y & z;

if (x) bar = y | z;

end

What if x == 0?

52

Inferred Latches

logic x,y,z;
logic foo, bar ;

always_comb begin

if (x) foo = y & z; //bad:

if (x) bar = y | z; // what if ~x?

end

What if x == 0?

53

Defaults

wire x,y,z;
logic foo, bar ;

always_comb begin
foo = x; bar = x; //good: defaults
if (x) foo = y & z; //
if (x) bar = y | z ; //

end

What if x == 0? foo = bar = x!
Always specify defaults for always_comb!

55

Always specify
defaults for

always_comb!

56

D Flip-Flop

58

Levels vs. Edges

59

D Flip-Flop vs. D Latch

60

D Flip-Flop vs. D Latch

61

D Flip-Flop in Verilog
module d_ff (

input d, //data
input en, //enable
output reg q //reg-isters hold state

);

always_ff@(posedge en) //pos-itive edge of en-
able

begin
q <= d; //non-blocking assign

end

endmodule

62

D Flip-Flop w/ Clock
module d_ff (

input d, //data
input clk, //clock
output reg q //reg-isters hold state

);

always_ff@(posedge clk)
begin

q <= d; //non-blocking assign
end

endmodule

63

D Flip-Flop w/ Clock
module d_ff (

input d, //data
input clk, //clock
output reg q //reg-isters hold state

);

always_ff@(posedge clk)
begin

q <= d; //non-blocking assign
end

endmodule

64

Blocking vs. NonBlocking Assignments

• Blocking Assignments (= in Verilog)

• Execute in the order they are listed in a sequenCal block;

• Upon execuCon, they immediately update the result of the assignment
before the next statement can be executed.

65

Blocking vs. NonBlocking Assignments

• Non-blocking assignments (<= in Verilog):

• Execute concurrently

• Evaluate the expression of all right-hand sides of each statement in the list of
statements before assigning the leM-hand sides.

• Consequently, there is no interacCon between the result of any assignment
and the evaluaCon of an expression affecCng another assignment.

• Nonblocking procedural assignments be used for all variables that are
assigned a value within an edge-sensiCve cyclic behavior.

66

Blocking vs. NonBlocking
always_comb
begin

x = a + 1;
y = x + 1;
z = z + 1;

end

always_ff @(posedge clk)

begin

x <= a + 1;

y <= x + 1;

z <= z + 1;

end

67

Blocking vs. NonBlocking
always_comb
begin

x = a + 1;
y = x + 1;
z = z + 1;

end

always_ff @(posedge clk)

begin

x <= a + 1;

y <= x + 1;

z <= z + 1;

end

68

Blocking vs. Non-Blocking Assignments

•ONLY USE BLOCKING (=) FOR COMBINATIONAL LOGIC
• always_comb

•ONLY USE NON-BLOCKING (<=) FOR SEQUENTIAL LOGIC
• always_ff

• Disregard what you see/find on the Internet!

69

BLOCKING (=) FOR
always_comb

NON-BLOCKING (<=) for
always_ff

70

D-FlipFlop w/Clock
module d_ff (

input d, //data
input clk, //clock
output reg q //reg-isters hold state

);

always_ff @(posedge clk)
begin

q <= d; //non-blocking assign
end

endmodule What is q before posedge clk?

71

D-FF’s with Reset

• Two different ways to build in a reset
• Synchronous
• Asynchronous

72

D-FF’s with Reset

• Two different ways to build in a reset
• Synchronous
• Asynchronous

74

Verilog models of D flip-flop

logic Q;

always_ff @ (posedge clk)

Q <= D;

logic Q;

always_ff @ (posedge clk, negedge rst)
if (~rst) Q <= 1'b0; //asynch. reset

else Q <= D;

logic Q;
always_ff @(posedge clk)

if (reset) Q <= 1'b0; // synch. reset

else Q <= d;

Edge triggered, synchronous reset, clock enable D flip-flop:

Edge triggered, asynchronous reset D flip-flop:

Edge triggered D flip-flop:

